ROLE OF OXIDATIVE STRESS IN PREECLAMPSIA AND NORMOTENSIVE PREGNANCIES

Authors

  • D. Kostadinova-Slavova Department of Obstetrics and Gynecology, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria Author

DOI:

https://doi.org/10.15547/tjs.2024.01.012

Keywords:

preeclampsia, oxidative stress, antioxidant system, peroxidation

Abstract

Preeclampsia is described as a systemic illness associated with pregnancy. It is characterized by symptoms such as edema, proteinuria (the presence of excess proteins in the urine), hypertension (high blood pressure), and dysfunction. Recent research has extensively investigated the role of oxidative stress in the pathophysiology of preeclampsia. Oxidative stress refers to an imbalance between the production of reactive oxygen species and the body's ability to detoxify them or repair the resulting damage. Despite the research focus on oxidative stress, there is currently no consensus among researchers regarding the mechanisms that lead to the occurrence of preeclampsia in expectant mothers. The present review aims to advance the understanding of the underlying causes of preeclampsia by addressing the main biomarkers of oxidative stress.

In summary, preeclampsia is a complex condition associated with pregnancy, and its pathophysiology has been the subject of extensive research, particularly in connection to oxidative stress. However, the lack of agreement among researchers indicates that the exact mechanisms leading to preeclampsia in expectant mothers are still not fully understood and may vary across different studies or perspectives.

 

References

Nirupama, R., Divyashree, S., Janhavi, P., Muthukumar, S. P., Ravindra, P.V. Preeclampsia: Pathophysiology and management. J Gynecol Obstetrics and Human Reprod. 50, 101975, 2021.

Bosman, Z. Factors Involved in the Ethiology of Early Onset Preeclampsia and New Possible Treatments (Doctoral dissertation). 2023.

Jung, E., Romero, R., Yeo, L., Gomez-Lopez, N., Chaemsaithong, P., Jaovisidha, A., Erez, O. The etiology of preeclampsia. American journal of obstetrics and gynecology, 226, S844-S866, 2022.

Chang, K. J., Seow, K. M., Chen, K. H. Preeclampsia: Recent Advances in Predicting, Preventing, and Managing the Maternal and Fetal Life-Threatening Condition. International Journal of Environmental Research and Public Health, 20(4), 2994, 2023.

Phipps, E. A., Thadhani, R., Benzing, T., Karumanchi, S. A. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nature Reviews Nephrology, 15(5), 275-289, 2019.

MacDonald, T. M., Walker, S. P., Hannan, N. J., Tong, S., Tu'uhevaha, J. Clinical tools and biomarkers to predict preeclampsia. EBioMedicine, 75, 2022.

Alanazi, A. S., Victor, F., Rehman, K., Khan, Y. H., Yunusa, I., Alzarea, A. I., ... & Mallhi, T. H. Pre-Existing Diabetes Mellitus, Hypertension and KidneyDisease as Risk Factors of Pre-Eclampsia: A Disease of Theories and Its Association with Genetic Polymorphism. International Journal of Environmental Research and Public Health, 19(24), 16690, 2022.

Hill, M. G., Brighton, A., Burgess, W. Placental abruption leading to disseminated intravascular coagulation: a clinical case and short review. AJOG Global Reports, 3(3), 100247, 2023.

Ortega, M. A., Fraile-Martínez, O., García-Montero, C., Sáez, M. A., Álvarez-Mon, M. A., Torres-Carranza, D., De León-Luis, J. A. The pivotal role of the placenta in normal and pathological pregnancies: a focus on preeclampsia, fetal growth restriction, and maternal chronic venous disease. Cells, 11(3), 568, 2022.

Bakrania, B. A., George, E. M., Granger, J. P. Animal models of preeclampsia: Investigating pathophysiology and therapeutic targets. American Journal of Obstetrics and Gynecology, 226(2), S973-S987, 2022.

Cubo, A. M., Villalba Yarza, A., Gastaca, I., Lapresa-Alcalde, M. V., Doyague, M. J., Gónzalez, C., Sayagués, J. M. Cesarean Hysterectomy in Abnormally Invasive Placenta: The Role of Prenatal Diagnosis. Diseases, 9(3), 56, 2021.

Mahajan, D., Sharma, N. R., Kancharla, S., Kolli, P., Tripathy, A., Sharma, A. K., Singh, S., Kumar, S., Mohanty, A. K., & Jena, M. K. Role of Natural Killer Cells during Pregnancy and Related Complications. Biomolecules, 12(1), 68, 2022.

Noris, M., Perico, N., & Remuzzi, G. Mechanisms of disease: pre-eclampsia. Nature clinical practice Nephrology, 1(2), 98-114, 2005.

Kusuma, G. D., Georgiou, H. M., Perkins, A. V., Abumaree, M. H., Brennecke, S. P., Kalionis, B. Focus: The Science of Stress: Mesenchymal Stem/Stromal Cells and Their Role in Oxidative Stress Associated with Preeclampsia. The Yale Journal of Biology and Medicine, 95(1), 115, 2022.

Zhao, H., Wong, R. J., & Stevenson, D. K. The impact of hypoxia in early pregnancy on placental cells. International journal of molecular sciences, 22(18), 9675, 2021.

Hirota, K. Basic biology of hypoxic responses mediated by the transcription factor HIFs and its implication for medicine. Biomedicines, 8(2), 32, 2020.

Dzhalilova, D., Makarova, O. Differences in tolerance to hypoxia: physiological, biochemical, and molecular-biological characteristics. Biomedicines, 8(10), 428, 2020.

Lopez-Jaramillo, P., Barajas, J., Rueda-Quijano, S. M., Lopez-Lopez, C., Felix, C. Obesity and preeclampsia: common pathophysiological mechanisms. Frontiers in physiology, 9, 1838, 2018.

Kornacki, P.Gutaj, J., Kalantarova, A., Sibiak, R., Jankowski, M., Wender-Ozegowska, E. Endothelial dysfunction in pregnancy complications. Biomedicines, 9(12):1756, 2021.

Rosales, C. Neutrophils at the crossroads of innate and adaptive immunity. Journal of Leucocyte Biology, 108: 377-396. 21, 2020.

Salamonsen, L. A., Hickey, M. J., & Evans, J. Neutrophils: Diverse functions in the endometrium of cycling women and during pregnancy. In Reproductive Immunology (pp. 91-113). Academic Press, 2021.

Castellanos Gutierrez A., Figueras F., Morales-Prieto D., Schleußner E., Espinosa G., Baños, N. Placental damage in pregnancies with systemic lupus erythematosus: A narrative review. Frontiers in immunology, 13: 941586, 2022.

Hahn, S., Hasler, P., Vokalova, L., van Breda, S. V., Lapaire, O., Than, N. G., Rossi, S. W. The role of neutrophil activation in determining the outcome of pregnancy and modulation by hormones and/or cytokines. Clin & Exper Immunol198: 24-36, 2019.

Milošević, N., Rütter, M., David, A. Endothelial Cell Adhesion Molecules- (un)Attainable Targets for Nanomedicines. Frontiers in medical technol, 4, 846065, 2022.

Kim, I., Moon, S.O., Kim, S.H., Kim, H.J., Koh, Y.S., Koh, G.Y. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem. 276:7614-20, 2001.

Kwaifa, I., Bahari, H., Yong, Y., Noor, S. Endothelial Dysfunction in Obesity-Induced Inflammation: Molecular Mechanisms and Clinical Implications. Biomolecules. 10: 291, 2020.

McElwain, C.J., Tuboly, E., McCarthy, F.P., McCarthy, C.M. Mechanisms of endothelial dysfunction in pre-eclampsia and gestational diabetes mellitus: windows into future cardiometabolic health. Frontiers in Endocrinology, 11: 655, 2020.

Yang, Y., Wu, N. Gestational diabetes mellitus and preeclampsia: correlation and influencing factors. Frontiers in cardiovascular medicine, 9, 831297, 2022.

Taftaf, R., Liu, X., Singh, S., Jia, Y., Dashzeveg, N. K., Hoffmann, A. D., Liu, H. ICAM1 initiates CTC cluster formation and trans-endothelial migration in lung metastasis of breast cancer. Nature communications, 12:4867, 2021.

Salminen, A.T., Allahyari, Z., Gholizadeh, S., McCloskey, M.C., Ajalik, R., Cottle, R.N., McGrath, J.L. In vitro studies of transendothelial migration for biological and drug discovery. Frontiers in Medical Technology, 2:600616, 2020.

Kraus, R. F., & Gruber, M. A. Neutrophils -From bone marrow to first-line defense of the innate immune system. Frontiers in immunology, 12:767175, 2021.

Chaudhary, P.K., Kim, S., Kim, S. An Insight into Recent Advances on Platelet Function in Health and Disease. International Journal of Molecular Sciences. 23:6022, 2022.

Chen, Y., Huang, J., Guo, Z., Zhu, Z., Shao, Y., Li, L., Sun, B. Primitive genotypic characteristics in umbilical cord neutrophils identified by single-cell transcriptome profiling and functional prediction. Frontiers in Immunology, 13: 970909, 2022.

Mukhin, V., Pankratyeva, L., Yartsev, M.N., Volodin, N.N. Developmental adaptations of neonatal neutrophils. Russian Journal of Allergy, 18: 55-65, 2021.

Mereweather, L., Constantinescu-Bercu, A., Crawley, J., Salles-Crawley, I. Platelet-Neutrophil Crosstalk in Thrombosis. Internat J molecular scie, 24: 1266, 2023.

Scherlinger, M., Richez, C., Tsokos, G. C., Boilard, E., & Blanco, P. The role of platelets in immune-mediated inflammatory diseases. Nature Reviews Immunology, 1-16, 2023.

Opichka, M.A., Rappelt, M.W., Gutterman, D.D., Grobe, J.L., McIntosh, J.J. Vascular dysfunction in preeclampsia. Cells, 10:3055, 2021.

Striessnig, J., Ortner, N.J. Ca2+ channel blockers. In Encyclopedia of Molecular Pharmacology (pp. 375-383). Cham: Springer International Publishing, 2022.

Echeverria, C., Eltit, F., Santibanez, J. F., Gatica, S., Cabello-Verrugio, C., Simon, F. Endothelial dysfunction in pregnancy metabolic disorders. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866: 165414, 2020.

Ortega, M. A., Fraile-Martínez, O., García-Montero, C., Sáez, M. A., Álvarez-Mon, M. A., Torres-Carranza, D., De León-Luis, J. A. The pivotal role of the placenta in normal and pathological pregnancies: a focus on preeclampsia, fetal growth restriction, and maternal chronic venous disease. Cells, 11: 568, 2022.

Melchiorre, K., Giorgione, V., Thilaganathan, B. The placenta and preeclampsia: villain or victim. American journal of obstetrics and gynecology, 226: S954-S962, 2022.

Hu, M., Li, J., Baker, P. N., Tong, C. Revisiting preeclampsia: a metabolic disorder of the placenta. The FEBS Journal, 289: 336-354, 2022.

Michalczyk, M., Celewicz, A., Celewicz, M., Woźniakowska-Gondek, P., Rzepka, R. The role of inflammation in the pathogenesis of preeclampsia. Mediators of inflammation, 2020.

Nakashima, A., Shima, T., Tsuda, S., Aoki, A., Kawaguchi, M., Yoneda, S., Saito, S. Disruption of placental homeostasis leads to preeclampsia. International Journal of Molecular Sciences, 21: 3298, 2020.

Chiorean, D. M., Cobankent Aytekin, E., Mitranovici, M. I., Turdean, S. G., Moharer, M. S., Cotoi, O.S., Toru, H.S. Human Placenta and Evolving Insights into Pathological Changes of Preeclampsia: A Comprehensive Review of the Last Decade. Fetal and Pediatric Pathology, 1-14, 2023.

Jung, E., Romero, R., Yeo, L., Gomez-Lopez, N., Chaemsaithong, P., Jaovisidha, A., Erez, O. The etiology of preeclampsia. American journal of obstetrics and gynecology, 226: S844-S866, 2022.

Han, C., Huang, P., Lyu, M., Dong, J. Oxidative stress and preeclampsia-associated prothrombotic state. Antioxidants, 9: 1139, 2020.

Afrose, D., Chen, H., Ranashinghe, A., Liu, C. C., Henessy, A., Hansbro, P. M., & McClements, L. The diagnostic potential of oxidative stress biomarkers for preeclampsia: systematic review and meta-analysis. Biology of sex Differences, 13: 1-15, 2022.

Chiarello, D. I., Abad, C., Rojas, D., Toledo, F., Vázquez, C. M., Mate, A., Marín, R. Oxidative stress: Normal pregnancy versus preeclampsia. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866: 165354, 2020.

San Juan-Reyes, S., Gómez-Oliván, L., Islas-Flores, H., Dublan-Garcia, O. Oxidative stress in pregnancy complicated by preeclampsia. Arch biochem bioph, 681, 108255, 2020.

Ferreira, R., Fragoso, M., dos Santos Tenório, M., da Paz Martins, A., Borbely, A., Moura, F., de Oliveira, A. Biomarkers of placental redox imbalance in pregnancies with preeclampsia and consequent perinatal outcomes. Arch Biochem and Bioph, 691:108464, 2020.

Ardalić, D., Stefanović, A., Banjac, G., Cabunac, P., Miljković, M., Mandić-Marković, V., Miković, Ž. Lipid profile and lipid oxidative modification parameters in the first trimester of high-risk pregnancies-possibilities for preeclampsia prediction. Clin Biochem 81: 34-40, 2020.

Phoswa, W., Khaliq, O. The role of oxidative stress in hypertensive disorders of pregnancy (preeclampsia, gestational hypertension) and metabolic disorder of pregnancy (gestational diabetes mellitus). Oxidative medicine and cellular longevity, 1-10, 2021.

Freire, Vde Melo, A., de Lima Santos, H., Barros-Pinheiro, M. Evaluation of oxidative stress markers in subtypes of preeclampsia: A systematic review and meta-analysis. Placenta, 132: 55-67, 2023.

Graf, A., Baizhumanov, A., Maslova, M., Krushinskaya, Y., Maklakova, A., Sokolova, N., Kamensky, A. The antioxidant system activity during normal pregnancy and pregnancy followed by hypoxic stress. Moscow Univ Biol Scie Bull, 76, 104-110, 2021.

Guerby, P., Tasta, O., Swiader, A., Pont, F., Bujold, E., Parant, O., Negre-Salvayre, A. Role of oxidative stress in the dysfunction of the placental endothelial nitric oxide synthase in preeclampsia. Redox biology, 40: 101861,2021.

Ramiro-Cortijo, D., de la Calle, M., Rodríguez-Rodríguez, P., López de Pablo, Á., López-Giménez, M., Aguilera, Y., Arribas, S. Maternal antioxidant status in early pregnancy and development of fetal complications in twin pregnancies: A pilot study. Antioxidants, 9: 269, 2020.

Toboła-Wróbel, K., Pietryga, M., Dydowicz, P., Napierała, M., Brązert, J., & Florek, E. Association of oxidative stress on pregnancy. Oxidative medicine and cellular longevity, 2020.

Joó, J., Sulyok, E., Bódis, J., Kornya, L. Disrupted Balance of the Oxidant–Antioxidant System in the Pathophysiology of Female Reproduction: Oxidative Stress and Adverse Pregnancy Outcomes. Current Issues in Molecular Biology, 45: 8091-8111, 2023.

Jiménez-Osorio, A. S., Carreón-Torres, E., Correa-Solís, E., Ángel-García, J., Arias-Rico, J., Jiménez-Garza, O., Estrada-Luna, D. Inflammation and Oxidative Stress Induced by Obesity, Gestational Diabetes, and Preeclampsia in Pregnancy: Role of High-Density Lipoproteins as Vectors for Bioactive Compounds. Antioxidants, 12: 1894, 2023.

Grzeszczak, K., Łanocha-Arendarczyk, N., Malinowski, W., Ziętek, P., Kosik-Bogacka, D. Oxidative Stress in Pregnancy. Biomolecules, 13: 1768, 2023.

Alencar, A., Swan, K., Pridjian, G., Lindsey, S., Bayer, C. Connecting G protein-coupled estrogen receptor biomolecular mechanisms with the pathophysiology of preeclampsia: a review. Reproductive Biology and Endocrinology, 21: 60, 2023.

Santander Ballestín, S., Giménez Campos, M., Ballestín Ballestín, J., Luesma Bartolomé, M.Is supplementation with micronutrients still necessary during pregnancy? A review. Nutrients, 13: 3134, 2021.

Kumar, N., Das, V., Agarwal, A., Pandey, A., Agrawal, S., Singh, A. Pilot Interventional Study comparing fetomaternal outcomes of 150 mg versus 75 mg aspirin starting between 11 and 14 weeks of pregnancy in patients with high risk of preeclampsia: a randomized control trial. J Obstetrics and Gyn Ind 70, 23-29, 2020.

Wibowo N, Purwosunu Y, Sekizawa A. Antioxidant supplementation in pregnant women with low antioxidant status. J Obstet Gynaecol Res 2012; 38 (9): 1152–61.

Klemmensen AK, Tabor A, Østerdal ML et al. Intake of vitamin C and E in pregnancy and risk of preeclampsia: prospective study among 57 346 women. BJOG An Int J Obstet Gynaecol 116 (7): 964–74, 2009.

Chappell LC, Brocklehurst P, Green ME, et al. Planned early delivery or expectant management for late preterm pre-eclampsia (PHOENIX): a randomised controlled trial. Lancet 394: 1181–90, 2019.

Published

2024-06-06

How to Cite

ROLE OF OXIDATIVE STRESS IN PREECLAMPSIA AND NORMOTENSIVE PREGNANCIES. (2024). TRAKIA JOURNAL OF SCIENCES, 22(1), 10. https://doi.org/10.15547/tjs.2024.01.012